友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!
物理世界奇遇记-第4部分
快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部! 如果本书没有阅读完,想下次继续接着阅读,可使用上方 "收藏到我的浏览器" 功能 和 "加入书签" 功能!
“别再还有啦!”汤普金斯先生想阻止教授再说下去——他
的脑袋瓜已经在旋转了。
“我们的宇宙正在膨胀着,”教授不理睬他的反对,继续往
下说,“我对你说过的那些星系和星系团正在彼此退行,拉大距
离。星系离我们越远,它们飞散的速度越快。这都是大爆炸产生
的结果。对了,你听说过大爆炸吗?”
汤普金斯先生点点头,心里却在想慕德到底上哪里去了。
“好的,”他的同伴接着说,“宇宙就是这样开始的。最初,
就是从一个点发生的大爆炸产生了宇宙万物。在大爆炸以前,什
么东西都没有:没有空间,没有时间,绝对没有一切。大爆炸是
宇宙万物的开始。后来,各个星系就一直在彼此飞散。不过,由
于它们之间互相施加着万有引力,它们飞散的速度正在逐渐减慢。
这里有一个同我们生死攸关的问题,那就是:各个星系飞散的速
度究竟是快到能够逃脱万有引力的吸引呢(如果能够,宇宙就将
永无止境地膨胀下去),还是它们有朝一日会停止飞散,然后又
被万有引力拉回到一起。如果它们被拉回来,那就会发生一次大
挤压。”
“在发生大挤压以后,会发生什么事呢?”汤普金斯先生问
道,他的兴趣被这个问题重新唤醒了。
“那可能就是世界的未日——宇宙不复存在。不过,也可能
发生反复——一种大反复。也就是说,宇宙可能是脉动:先是膨
胀,接着是收缩,然后又是另一个膨胀和收缩的循环,并且就这
样一直反复循环下去,直到永远。”
“那么,宇宙到底属于哪一种?”汤普金斯先生问道,“它
是会永无止境地膨胀下去,还是有朝一日会变成大挤压呢?”
“我也不敢说。这取决于宇宙中物质的数量——究竟有多少
物质在产生那种使膨胀速度减慢的万有引力。科学家们好像已经
很巧妙地把它测算出来了。物质的平均密度接近于所谓的临界值,
即把两种不同场面分隔开的极限值。但是我们还很难说它到底有
多大,因为我们现在已经知道,宇宙中的绝大多数物质都不会发
光,它们不像束缚在恒星上的物质那样闪闪发光。所以,我们把
它们叫做暗物质。由于它们是暗的,要想探测到它们便困难得多
了。不过我们已经知道,它们至少占宇宙中全部物质的99%,而
且正是它们使得总密度接近于临界值。”
“大糟糕了,”汤普金斯先生评论说,“我非常想知道宇宙
要走的是哪条路。可是,密度的问题却弄得这么难以判定,真是
太倒霉了!”
“哦——你说得也对也不对。正是宇宙的密度(在所有可以
采取的可能值当中)偏偏如此接近于临界值这个事实,使人们猜
想到这其中必然有某种更深层的原因。许多人认为,在宇宙的初
期,有某种起作用的机制自动引导密度采取那个特殊值。换句话
说,密度如此接近于临界值绝非巧合,这不是由于某种偶然事件
而发生的,实际上,宇宙的密度就必须具有临界值。事实上,我
们以为现在我们已经知道那个机制是什么了,它被称为暴胀理论
……”
“又在说些莫名其妙的话啦,爸!”
慕德的到来使得两个人吃了一惊。她是从他们后面走出来的,
当时他们还在专心致志地谈话呢。“歇一会儿吧。”她说。
“我们马上就谈完了,”教授还是不肯停下,他又转向他的
朋友继续说,“在我们被她这样没有礼貌地打断之前,我正想告
诉你,我们所谈过的这些事情全都是彼此相关的。如果物质的数
量多到足以产生大挤压,那么也就足以产生正曲率,结果,宇宙
将具有有限的体积,成为一个封闭的宇宙。但是,如果物质的数
量不够多……”他停了下来,对汤普金斯先生作了个手势,表示
现在该他把这个故事接着讲下去了。
“呃,如果,如果像你说的,物质的数量不够多……呃……”
汤普金斯先生显得非常扭怩不安——这不光是因为他觉得自己在
老师面前表现得很愚蠢,并且是因为他想到慕德故意在一旁听着,
而使事情变得更糟。“是的,我是想说,如果物质的数量不够多,
不能达到临界密度,那么,宇宙就会永远膨胀下去,并且——并
且——呃,我只不过是猜想……猜想会出现负曲率……并且宇宙
会变得无限大……”
“太好了!”教授喊了起来,“多好的学生啊!”
“真的是非常好。”慕德同意说,“不过,我们全都知道,
宇宙的密度很可能就是临界值,所以最后会停止膨胀——但这只
是在遥远的将来才会发生的事啦。这一切,我以前都听说过了。
现在,你想不想去泡一泡?”
过了一会儿,汤普金斯先生才认识到这个问题是对他提的。
“我吗?你是说我要不要去游泳?”
“是的。你总不会认为我指的是他吧,是不是?”她笑了。
“呃,可是我还没有换衣服呢。我得回去拿我的游泳裤。”
“当然啦,我还以为你会一直穿着什么东西哩!”她带着调
皮的神情说道。
4 教授那篇关于弯曲空间的演讲稿
女士们,先生们:
今天我所要讨论的问题,是弯曲空间及其与引力现象的关系。
你们当中任何一个人都能够很容易地想象出一条曲线或一个曲面,
对于这一点,我是一点也不怀疑的;但是,一提到三维的弯曲空
间,你们的脸就全拉长了,你们大概认为,这是某种极不寻常的、
几乎是超自然的东西。为什么人们这样普遍对弯曲空间怀有“恶
感”,难道这个概念真的比曲面的概念更难以理解吗?要是你们
稍稍多想一想,大概就有许多人会说,你们之所以觉得难以想象
出一个弯曲空间,是因为你们无法像观察一个球的曲面,或者像
观察马鞍那类二维的曲面那样,“从外面”对它进行观察。但是,
那些说这种话的人,只不过是暴露出他们自己不懂得曲率的严格
数学意义罢了,事实上,这个词的数学含义同它的一般用法是有
相当大的区别的。我们数学家说某个面是弯曲的,那是说,我们
在这个面上所画的几何图形的性质,不同于在平面上所画的同一
几何图形的性质,并且,我们用它们偏离欧几里得古典法则的程
度来衡量曲率的大小。如果你在一张平坦的纸上画一个三角形,
那么,正如你从初等几何学所得知的那样,这个三角形三个角的
总和等于两个直角。你可以把这张纸弯成圆柱形、圆锥形,或者
甚至弯成更复杂的形状,但是,画在这张纸上那个三角形的三个
角之和,必定永远保持等于两个直角。
这种面的几何性质不随上述形变而改变,因此,从“内在”
曲率的观点看来,形变后所得到的各种面(尽管在一般概念中是
弯曲的),事实上是和平面一样平坦的。
但是,你要是不把一张纸撕破,你就无法把它贴切地贴在球
面上或鞍形面上;不仅如此,如果你想在一个球面上画一个三角
形(即所谓球面三角形),那么,欧几里得几何学那些简单的定
理就不再成立了。事实上,我们可以用北半球上任何两条半截的
子午线(即经线)与两者之间那段赤道所构成的三角形作为例子,
这时,三角形底边的两个角都是直角,而顶角则可以具有任意大
的角度,这三个角之和显然大于两个直角。
同球面的情形相反,在鞍形面上,你会惊讶地发现,三角形
三个角之和永远小于两个直角。
可见,要确定一个面的曲率,必须研究这个面上的几何性质,
而从外面来观察常常会产生错误。仅仅依靠这种观察,你大概会
把圆柱面同环面划为一类,其实,前者是平面,后者却是无法矫
正的曲面。你一旦习惯于曲率的这种新的、严格的数学概念,你
就不难明白,物理学家们在讨论我们所居住的空间到底是不是弯
曲的时候,他们所指的是什么东西了。我们不需要跑到我们所居
住的三维空间的“外面”去“看看”它是否弯曲;而可以留在这
个空间中进行一些实验,去查明欧几里得几何学的普通定律是不
是还能成立。
但是,你们也许会觉得奇怪:为什么我们在一切场合下都应
该指望空间的几何性质与已经成为“常识”的欧几里得几何有所
不同呢?为了表明这种几何性质确实取决于各种物理条件,让我
们设想有一个巨大的圆形舞台,像唱片那样绕着自己的轴匀速地
转动着。再假设有一些小量尺,沿着从圆心到圆周上某一点的半
径,头尾相接地排成一条直线;另一些量尺则沿着圆周排成一个
圆。
在相对于那个安放舞台的房间静止不动的观察者A看来,当
舞台在转动时,那些沿着舞台为圆周摆放的量尺是在其长度方向
上运动,因此,它们会发生尺缩(正像我在第一次演讲中说过的
那样)。这样一来,为了把圆周补全,所用的量尺就必须比舞台
静止不动时更多一些。而那些沿着半径摆放的量尺,它们的长度
方向正好同运动方向成直角,所以就不会发生尺缩,这样一来,
不管舞台是不是在转动,都要用同样多的量尺去摆满从舞台的中
心到圆周上某一点的距离。
可见,沿着圆周测出的距离C(用所需要的量尺数目表示)
必将大于一般情况下的2πr,这里r是所测出的半径。
我们知道,在观察者A看来,这一切都是合情合理的,因为
沿着圆周摆放的量尺的运动产生了尺缩效应。但是,对于站在舞
台中心而且随着舞台转动的观察者B,情形又是什么样呢?她会
怎样看待这个问题呢?由于她所看到的两组量尺的数目和观察者
A相同,她同样会下结论说,这里的周长与半径之比不符合欧几
里得几何学的定理。但是,假如舞台是处在一间没有窗子的封闭
房子里,她就看不出舞台是在转动。那么,她会用什么原因来解
释这种反常的几何性质呢?
观察者B可能并不知道舞台在转动,但是却会意识到在她周
围正在发生某种奇怪的事情。她会注意到,放在舞台上不同地方
的物体并不保持静止不动,它们全都从中心向外围进行加速运动,
其加速度取决于它们的位置和中心的距离。换句话说,它们看起
来都受到一种力(离心力)的支配。这是一种很奇怪的力,不管
物体处在什么特定的位置,质量有多大,这个力总是以完全相同
的加速度使它们向外围进行加速运动。换句话说,这种“力”似
乎能够自动调整自己的强度去配合物体的质量,因而总是能产生
物体所处位置特有的加速度。因此,观察者B会作出结论说,在
这种“力”与她发现的非欧几里得几何性质之间,必然存在着某
种关系。
不仅如此,我们还可以考虑一束光线前进时的路径。对于静
止的观察者A来说,光线总是沿着直线传播的。但是,如果有一
束光线贴着旋转舞台的表面穿过舞台,又会怎么样呢?尽管在观
察者A看来、这束光线一直是沿着直线行进的,但是,它在旋转
舞台的表面上划出的路径却并不是直线,这是因为这束光需要一
定的时间才能穿过舞台。而在这段时间内,舞台已经转过一定的
角度(这就像你用快刀在旋转的唱片上划一条直线时,唱片上的
划痕会是一条曲线而不是直线那样)。因此,站在旋转舞台中心
的观察者B会发现,那束光线在从舞台的一侧穿到另一侧时,并
不是沿着直线、而是沿着曲线行进。她会像前面提到的周长与半
径之比的场合那样,把这种现象归因于在她周围起作用的特殊物
理条件所产生的那个特殊的“力”。
这种力不仅影响到几何性质(包括光线行进的路径),并且
还影响着时间的进程。把一个钟表放在旋转舞台的外围,就可以
把这种情况演示出来。观察者B会发现,这个钟表比放在舞台中
心的钟表走得慢。从观察者A的观点看,这个现象是最容易理解
不过了,因为他注意到,那个放在外围的钟表在随着舞台的转动
而运动,所以比起放在舞台中心。位置保持不变的钟表来,它的
时间便延长了(钟慢效应)。而观察者B由于没有意识到舞台的
转动,就必定把那个钟表走得慢归因于前面所说的那个“力”的
存在。这样一来,我们便可以知道,不论是几何性质还是时间进
程,都能够成为物理环境的函数。
现在我们再来讨论一种不同的物理场合——这是我们在地面
附近发现的情形:一切物体都被地心引力吸向地面。这同旋转舞
台上的一切物体都被甩向外围的情形有点相似。如果我们注意到
下落的物体所得到的加速度只与其位置有关而与其质量无关时,
这种相似性便更明显了。从下面要介绍的事例,我们甚至可以更
加清楚地看到引力与加速运动之间的这种对应关系。
假设有一艘专门进行星际航行的宇宙飞船,它自由自在地在
空间中某个地方漂浮着,不管离哪一颗恒星都非常远,因而在飞
船中不存在任何引力。结果,在这样一艘飞船里的一切物体,包
括乘坐它旅行的实验者在内,就都没有任何重力,他们会像凡尔
纳著名的幻想小说中的阿尔丹及其旅伴在飞往月球的旅途中那样,
自由自在地在空气中漂浮着。
现在,发动机开动了,我们的飞船开始运动,并且逐渐增大
速度。这时在飞船内部会发生什么情况呢?很容易看出,只要飞
船处在加速状态,飞船内部的一切物体就会显示出朝着飞船底部
运动的倾向,或者是说,飞船底部将朝着这些物体运动——这两
种说法是一码事。举个例子吧,要是我们的实验者手中拿着一个
苹果,然后撒手把它放开,那么,这个苹果必将以固定不变的速
度——即飞船在放开苹果那一瞬间的运动速度——相对于周围的
恒星继续运动。但是,飞船本身却在加大速度,结果,船舱的底
部由于在整个时间里运动得越来越快,它最后必将赶上那个苹果,
并且撞上它。从这个瞬时起,这个苹果就会永远同底部保持接触
状态,并且靠稳定的加速度而压在底部上。
但是,在飞船内部的实验者看来,这种情况却好像是那个苹
果在以固定的加速度“下落”,并且在击中底板以后,继续靠它
自身的重力压在底板上。如果他再让别的物体掉下,他就会进一
步发现,所有这些物体全都以完全相同的加速度落下(如果忽略
掉空气的摩擦力的话),于是他就会想起,这恰好就是伽利略所
发现的自由落体定理。事实上,他根本不能够发现在加速船舱中
的现象与一般重力现象之间有一点点最细微的差别。他完全可以
使用带钟摆的时钟,可以把书放在书架上而不必担心它们飞掉,
还可以把爱因斯坦的照片挂在钉子上。大家知道,正是爱因斯坦
最先指出,参考系的加速度是与重力场等效的,他还在这个基础
上提出了所谓广义相对论。
但是,正像转动舞台那个例子一样,在这里,我们也会发现
一些伽利略和牛顿在研究重力时所不知道的现象。这时,穿过船
舱的光线将发生弯曲,并且随着飞船加速度的不同,而投射在对
面墙上屏幕的不同地方。当然,在船舱外的观察者看来,这可以
解释成光的匀速直线运动同飞船船舱的加速运动相叠加的结果。
在船舱内的几何图形也必定是不正常的,由三条光线构成的三角
形,它的三个角的总和并不等于两个直角,而一个圆的圆周与其
直径之比则将大于通常的π值。在这里,我们所考虑的是加速系
统的两个最简单的例子,但是,上面所说的等效性,对于任何一
个指定的刚性的(或不可变形的)参考系的运动也同样成立。
现在我们就要接触到最重要的问题了。我们刚才已经看到,
在一个加速的参考系中,可以观察到许多在一般万有引力场中未
曾观察到的现象。那么,像光线弯曲或钟表走慢这样的新现象,
在由可测质量所产生的引力场中,是不是同样存在呢?
要量度光线在引力场中的曲率,利用前面提到的宇宙飞船那
个例子比较方便。如果l是船舱的跨距,那么,光线走过这段距
离所需的时间就是
(5)
在这段时间内,以加速度g运动的飞船所飞过的距离为L,从
初等力学的公式,我们知道
(6)
因此,表示光线方向改变的角度具有如下的数量级
(7)
光在引力场中走过的距离越大,Φ的值也越大。当然,现在
应该把宇宙飞船的加速度解释成重力加速度。如果我现在让一束
光线穿过这个演讲厅,我可以粗略地取 L=10米。地面上的重力
加速度g=9。81米/秒2,c=3×1O8米/秒,所以
(8)
这样,你们可以看出,在这种条件下,光线的曲率是肯定无
法观察到的。但是,在太阳表面附近,g=270米/秒2,并且光
线在太阳的引力场中走过的路程是非常长的。有一些精确的计算
表明,一束光线从太阳表面附近经过时的偏转值应该等于 1.75
弧秒。天文学家在日全蚀时观察到的。太阳旁边的恒星视位置的
位移值就正好是这样大。现在由于天文学家利用了从类星体发出
的强射电辐射,就不必再等到日全蚀时再进行测量了。从类星体
发出并从太阳旁边穿过来的射电波,就是在大白天也可以毫无困
难地探测到。正是这些测量使我们能够最精确地测出光线的弯曲。
因此,我们可以作出结论说,我们在加速系统中发现的光线
弯曲,实际上是和它在引力场中的弯曲相同的。那么,观察者B
在旋转舞台上发现的另一个奇怪的现象——放在舞台外围的钟表
走得比较慢,会不会也是这样呢?在地球重力场中,放在地面上
空某个地方的钟表,会不会有类似的表现?换句话说,加速度所
产生的效果与重力所产生的效果是否不仅非常相似,而且完全等
同呢?
这个问题只能靠直接的实验来解答。事实上,这样的实验已
经证明,时间是可以受到普通重力场的影响的。通过加速运动与
引力场的等效关系所预料的效应是非常小的,这正是直到科学家
们开始专门探索它们以后才能发现它们的原因。
用旋转舞台这个例子,很容易确定钟表速率变慢的数量级。
从初等力学得知,作用在离中心的距离为r。质量为1的粒子上的
离心力,可由下面公式算出:
(9)
式中ω是转动舞台的固定的角速度。因此,这个力在粒子从中心
运动到边缘时所作的总功是
(10)
式中R是舞台的半径。
按照上面所说的等效原理,我们应该把F看做是舞台上的引
力,而把W看做是舞台中心与边缘之间的引力势之差。
我们应该记得,正像我在上一次演讲中所谈到的那样,以速
度 v运动的时钟要比不运动的时钟走得慢一些,两者相差一个因
子
如果v同c比起来非常小,我们可以把第二项以后的各项都略去不
计。按照角速度的定义,v=Rω,这样,“减慢因子”就变成
(11)
这是用两个地点的万有引力势差来表示的时钟速率的改变。
如果我们把一个时钟放在艾菲尔铁塔(300米高)的底部,再
把另一个时钟放在塔顶,由于它们之间的势差非常之小,所以,
放在底部的那个时钟走慢的因子只有
0。999 999 999 999 97
但是,地球表面上和太阳表面上的重力势差却大得多了,由
此产生的减慢因子等于0。999 999 5, 这是用很精密的测量所能
探测到的。当然,从来没有人想把普通时钟搬到太阳表面上去,
看看它走得怎么样。物理学家们有一些更妙的办法,利用分光计,
我们可以观察太阳表面上各种原子的振动周期,并把它们与同一
种元素的原子在实验室本生灯火焰中的振动周期相比较。在太阳
表面上,原子的振动应该比地面上慢一些,两者相差一个由公式
(11)所给出的减慢因子,因此,它们所发出的光应该比地面光
源的光稍红一些,也就是说,它们发出的光的频率会向光谱的红
端移动。这种“红移”确实已经在太阳的光谱中观察到了,对于
其他一些能够精确测定其光谱的恒星,也同样观察到这种效应,
并且观察到的结果同我们的理论公式所给出的值相符。
现在,我们可以再回头讨论空间曲率的问题了。你们大概还
记得,我们曾经利用直线的最合理的定义得出结论说,在非匀速
运动的参考系中所得到的几何图形是与欧几里得几何学不同的,
因此,应该认为这样的空间是弯曲空间。既然任何一个重力场都
同参考系的某种加速度等效,这也就意味着,任何一个有重力场
存在的空间都是弯曲空间。我们还可以进一步说,重力场只不过
是空间曲率的一种物理表现。因此,每一点上的空间曲率都应该
由质量分布所决定,并且在重的物体(或天体)近旁,空间曲率
应该达到其极大值。由于描述弯曲空间的性质及其与质量分布的
关系的数学公式相当复杂,我无法在这里进行介绍。我只想提一
提,这个曲率一般不是取决于一个量,而
快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!