友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!
富士康小说网 返回本书目录 加入书签 我的书架 我的书签 TXT全本下载 『收藏到我的浏览器』

我的哲学的发展-第9部分

快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部! 如果本书没有阅读完,想下次继续接着阅读,可使用上方 "收藏到我的浏览器" 功能 和 "加入书签" 功能!


列关系的时候,它们的相似在于它们的各项可以发生相互关系而不变换次序。但是相似这个概念可以用于一切有领域的关系,也就是,可以用于一切关系,在这种关系中,范围和倒转范围是一种类型。

    我们现在说,一个P关系的关系数就是那些在次序上和P相类似的关系的类。这正有类于用次序的类似代替类的类似,用关系代替类的基数算术。加法、乘法和指数的定义有点儿类乎基数算术里的定义。

    加法和乘法都遵循结合定律。

    分配定律在一种形式中是适用的,但是,普通说来,在另一种形式中是不适用的。除了有关的关系的领域是有限的,交互定律是不适用的。举例来说,今有象自然数的系列的一个系列,在这个系列上加上两项。如果你把这两项加在开头的地方,这个新的系列就象是那个旧的系列;可是,如果你把这两项加在末尾,这个新的系列就不同了。无论什么时候,如果x对y有P关系,或x对y有Q关系,或x属于P的领域,y属于Q的领域,那么,P和Q两种关系之和就可以说是能适用于x与y之间的一种关系。

    根据这一个定义,一般说来,P与Q之和跟Q与P之和不同。不仅一般的关系数是如此,而且序数也是如此,如果其中之一或二者是无限的。

…… 97

    69第  八  章

    序数是关系数的次一级的类,也就是能适用于“次序整然的”系列,“次序整然的”系列其性质是:其中任何有若干项的次一级的类有一个第一项。坎特曾研究过超限序数,但是,据我所知,一般的关系数是在《数学原理》中第一次加以界说和研究的。

    一两个例证也许对于我们有帮助。假定你有若干对成一个系列,你想按照上面解释选择公理的意思从这些对里形成一系列的选择。这个程序和基数算术里的程序十分近似,只是有一点不同,就是,我们现在是想把这些选择排成一个次序,而以前我们只是把它们算做一个类。此外又假定,正如我们讨论类的选择的时候那样,我们有三个组,(x1,x2,x3)

    、(y1,y2,y3)和(z1,z2,z3)

    ,我们想从这些里边弄出一个选择的系列来。这有种种办法。也许最简单的办法是这样:任何包含x1的选择出现在任何不包含的选择之先。在二者都包含x1或都不包含x1的那些选择之中,那些包含y1的选择出现在不包含y1的选择之先。

    在二者都包含或都不包含x1和y1的那些选择之中,那些包含z1的选择出现在那些不包含z1的选择之先。我们为尾数2和尾数3立下类似的规则。这样我们就得到所有可能有的选择,排成一个系列,这个系列的开头是(x1,y1,z1)

    ,最后是(x3,y3,z3)。显然这个系列是有二十七项,但是这里二十七这些数目已经不是象我们从前那个例子里的那样一个基数,而是一个序数了,也就是说,是特别一种关系数。由于在那些选择之中建立了一个次序,它和一个基数是有区别的,一个基数并不建立一个次序。只要我们只限于有限数,在序数与基数之间是没有重

…… 98

    《数学原理》:数学方面79

    要的形式上的分别的;但是,有了无限数的时候,由于交互定律不起作用,其间的分别就变得重要了。

    在证明关系算术的形式定律的时候,我们常常有机会讨论系列的系列的系列。用下面这个实例,你在心中就可以得到一个具体形像:假定你要把一些砖堆积起来,而且,为的是把这件事说得更有趣,假定这是些金砖,你是在诺克司堡工作。我现在假定你先弄成一行砖,把每一块砖放在前一块的正东;你然后再弄一行,和第一行接触,但是是在第一行的正北;这样下去,你弄了许多行,到适当的程度而止。然后你在第一层的上面弄第二层,在第二层的上面弄第三层,这样下去,直到所有的砖都堆完为止。那么每一行就是一个系列,每一层是一个系列的系列,这一整堆是一个系列的系列的系列。我们可以用符号把这个过程代表如下:假定P是上层对下层的关系;P的领域是由各层而成;每一层是一系列的行。

    假定Q1是最高一层各行南对北的关系,Q2是第二层各行的这种关系,其余类推。

    Q的领域是一系列的行。在最高一层最南边的一行中,东对西的关系,我们称之为R1;在最高一层的第二行中,东对西的关系,我们称之为R12;其余类推,最后是Rmm,假定m是层的数目,n是每一层中行的数目。

    在这一个实例中,我是假定层数和行数是有限的,但是这是一个完全不必要的限制,有这一个限制只是为把这个实例弄得简单一点。

    在普通的语言里,所有这些都颇为复杂而冗长,但是用起符号来就变得简易了。假定F是x对P的关系(这个关系就是x是P的领域的一项)。

    那么,F3就是F和F和F的关系产物。举例来说,单个的砖是对P有F3关系的一些项,

…… 99

    89第  八  章

    那就是说,每个砖是P的领域的一项的领域的一项的领域的一项。在证明加法和乘法的结合定律的时候,我们需要这样的系列的系列的系列。

    如果两个关系数在次序上类似,我们可以说,它们产生相同的“结构”

    ,但结构是略比这个更为广泛的概念,因为它不限于二的关系,那就是说,二项之间的关系。在几何学里,三项或四项之间的关系是很重要的,怀特海原要在《数学原理》的第四卷里讨论这些关系。但是他做了不少预备工作之后,他的兴趣松懈下来,他放弃了这计划,而走向哲学去了。

    可是不难看出结构这个概念如何可以一般化。

    假定P和Q已经不是二的关系,而是三的关系,这样的关系有许多通俗的例子,如,“在……之间”和“嫉妒”。关于P和Q,我们可以说它们有相同的结构,如果能使它们有相互关系,凡在那个次序里xyz有P关系的时候,它们的相关者在相同的次序里就有Q关系,反之亦然。结构之为重要是有经验上的原因的,但是它的重要性也有纯粹是逻辑上的原因。如果两个关系有相同的结构,它们的逻辑上的性质是同一的,只是有一件:有赖于它们的领域的项的那些性质要除外。我所谓“逻辑的性质”是指能用逻辑术语表示的那些性质,不只是指能。。

    用逻辑证明的那些性质。对于系列关系加以界说的那三个特。。

    征就是一个例子,就是说,它们是不对称的、及物的、连接的。这些特征可以用逻辑术语表示出来;如果一个关系有其中之一的任何特征,每个在次序上和它类似的关系就也有这一个特征。每个关系数,不管是有限的或是无限的,是有这个数的任何关系的一个逻辑的性质。大体说来,凡关于一个

…… 100

    《数学原理》:数学方面99

    关系你所能讲的话,不提有这个关系的各项,也不谈任何不能用逻辑术语表示的性质,都完全能适用于任何与你着手的关系相类似的关系。逻辑的和别的性质之间的区别是很重要的。举例来说,如果P是颜色之间的一种关系(例如虹里颜色的次序)

    ,是颜色之间的一种关系这么一个性质不属于在次序上与P类似的一切关系;但是是系列的那样的一个性质却是如此。再举一个较为复杂的例子:留声机片和灌片时原来的音乐在它们的逻辑的性质方面是分辨不出来的,虽然这两种东西所由成的实际材料是很不同的。

    另一个实例也许能帮助我们把结构这个概念解释明白。

    假定你知道某种语言的文句构造上的规则,但是,除了用于逻辑的一些字以外,你一个字也不认识,并且假定有人给了你用这种文字写出来的一个句子:这句话可以有的不同的意义是什么呢?这些意义的相同之点是什么呢?只要能使这整个句子具有意义(也就是说,在逻辑上讲得通)

    ,你对于每个单个的字可以赋予任何意义。那么,这句话就有很多可能的意义,也说不定是无限多,但是它们都有相同的逻辑结构。

    如果你的语言具备某些逻辑上的必要条件,使你的一些句子为真的那些事实也就有相同的结构。

    我认为关系算术是重要的,这不只是因为它是一个有趣的通则,也是因为它给人以对付结构所必需的一种符号技术。

    我一直认为,不熟悉数理逻辑的人很不容易了解“结构”的意义,而且,因为有这一种困难,在试图了解经验的世界的时候,他们很容易走错了路。仅是因为这个道理,关系算术这一个学说至今不大为世人所注意,我对此觉得十分惋惜。

…… 101

    01第  八  章

    我之知道这个学说没有完全被人所忽略,是因为我在一九五六年出乎意料之外接到了柏林汉布特大学俞尔根。斯密教授的一封信。他告诉我,这个学说的一些部分在所谓“辞典编辑问题”中曾经用过,这个问题是在于规定一种语言中字的字母排列,这种语言的字母是无限的。

…… 102

    第九章 外在的世界

    在《数学原理》写完后不久,还在印刷中,几尔柏特。

    马瑞就请我为家庭大学丛书写一本小书,用浅近的语言把我的哲学说一个梗概。这个邀请来得正是时候。我巴不得躲开符号演绎推理的严刻性。而且那时我的主张清晰明确,为前此以及后来所未有,很容易用简单平易的方法加以说明。这本书很成功,现在销路仍然很广。

    ①我觉得多数哲学家仍然认为这书是充分说明了我的主张。

    把那本书重读一遍,我发现里边有很多东西是我现在仍然相信的。我仍然承认“知识”不是一个精确的概念,而是混入到“或然的意见”中。我仍然承认自明是有不同的程度的,了解一个普遍命题而不知道其真理的任何个别的例子是可能的,例如:“所有从未乘到一起的成对的数其积是大于1,0”。但是另有一些问题我的意见已经起了很大的变化。我不再以为逻辑定理是事物的规律;适得其反,我现在把逻辑定理看做纯是属于语言性质的。我不再以为点、瞬和质点是世界原料部分。我在那本小书里所讲的关于归纳法的话,我现在看来是很粗疏的。我讲到普遍和我们关于普遍的知识讲得很有把握,我现在没有那种把握了,虽然我关于这个问题

    ①译者按:指《哲学问题》,1912年出版。

…… 103

    201第  九  章

    没有什么新的意见象从前那样自信地提出来。

    关于点、瞬和质点,我是被怀特海从我的“独断的睡梦”中唤醒的。怀特海发明了一个方法,把点、瞬和质点构成一组一组的事件,每一个的范围都是有限定的。这就有了可能象我们以前在算术中用奥卡姆剃刀那样,把它用在物理学里。我很喜欢数理逻辑方法上的这种新应用。这似乎是暗示,用于理论物理学里的那些概念,其光滑顺溜与其说是由于世界的性质,倒不如说是由于数学家的巧妙手段造成的。

    而且在知觉问题上这也好象是开辟了一个全新的前景。我受聘于一九一四年春季要在波士顿作劳威尔讲演,我选择了“我们关于外界的知识”做我的题目,并且就这个问题我开始利用怀特海的新工具做研究。

    知觉是我们外界知识的源泉这个问题,在我看来是很麻烦的。如果两个人看一样东西,由于透视和光线射下来的方向,他们之所见就有所不同。

    没有理由单挑出一个知觉者来,说他才是看见了那件东西的真相。所以我们不能认为外界的物就是人之所见。物理学家认为这是老生常谈:我们看不见原子和分子。物理学家向我们保证原子和分子是物的构成成分。生理学家也一样使人气馁。他讲明从眼到脑有一个复杂的因果连环,而且你之所见是有赖于脑子里的变化。如果这个脑的状态能够被非平时的原因所引起,你就会有一种视觉,这个视觉不像平时那样和一个外界的物体相牵连。这类的事不专是牵涉到视觉。

    这可以由一个大家都知道的例子来说明:一个人觉得他的大脚趾疼,虽然他的腿已经被切断了。这种论证说明,我们直接所经验到的不可能是物理学所讨论的外

…… 104

    外在的世界301

    界的物,可是只有我们直接所经验到的才给我们理由相信有个物理学的世界。

    要想解决这个问题,有各种方法。最简便的是唯我论的方法。

    我是把唯我论当做一种假设,而不是当做一种定论。

    那就是说,我是考量一个学说,就是,除了我自己的经验以外,没有正当的理由对于任何东西加以肯定或否定。我不认为这个学说可以驳得倒,但是我也不认为任何人能认真相信它。

    有些人主张,承认经验是合理的,不管是自己的或是别人的,但是相信没人经验得到的事情则是不合理的。这个学说是承认来自别人的证明,但是拒绝相信有无生命的物质。

    最后就是朴素实在论者和物理学家所都同意的那个羽翼已成的学说。据这一个学说的说法,有些东西是活的,是一簇一簇的经验,另一些东西是无生命的。

    这些学说中的第二个和第三个是需要从我所经验到的推论到我所不能经验到的东西。这些推论不能按照逻辑加以证明。只有承认演绎逻辑范围以外的一些原则,这些推论才能算确实。在《哲学问题》和所有我以前的思想里,我是承认物理学中所讲的那样的物质的。可是这就留下了一条介乎物理学和知觉(也可以说心与物)之间的令人不快的鸿沟。在最初我热心要放弃物理学家的那个“物质”的时候,我希望能揭示出那些假设的实体来,这些实体一个知觉者不能知觉为一些完全由他所知觉到的成分所组成的结构。我头一回把罗威尔讲演里所提出的学说加以解说的时候,我提议这是一件可能的事。这头一回的解说是在一篇题为《感觉材料对物理学的关系》的文章里,发表在一九一四年的《科学》里。

    在

…… 105

    401第  九  章

    这篇文章里我说:“如果科学要是可以证实的,我们就要遇到以下的这个问题:物理学把感觉材料证明为物体的作用,但是只有在物体能证明为感觉材料的作用的时候,科学的证实才是可能的。因此我们就不能不解决那些用物体来表示感觉材料的方程式,为的是使这些方程式倒是用感觉材料来表示物体”。但是没有多久,我就相信这是一个行不通的计划,物体不能解释为由实际上经验到的成分所组成的结构。也是在这一篇文章里,在后边的一段里,我说明我容许我有两种推断:(甲)别人的感觉材料和(乙)

    ,我所谓“感相”

    ,我假定这是指物在没人知觉它们的地方所呈的现象。我接着说,我倒高兴能把这两种推断废除,“这样就把物理学建立在一个唯我论的基础上;可是毫无疑问,那些人性比要求逻辑经济更强的人(我恐怕是大多数)就不会和我一样要把唯我论弄得能满足科学上的条件。”

    因此我就断念不再想只用经验的材料来构成“物质”

    ,并且安于一个把物理学和知觉和谐地配合为一个整体的世界的图形。

    一九一四年元旦日我忽然想到的那个关于我们的外界的学说有几件新奇的东西。其中最重要的是空间有六度而不是有三度的那个学说。

    我得到的结论是,在物理学的空间里,认为是一个点的,说得更正确一些,认为是一个“极微地域”

    的,实际上是一个由三度而成的复合体。一个人的知觉对象的全体就是这个复合体的一个实例。我之所以有这个主张是有种种理由的。也许最有力的理由是可以造出一些仪器来,这些仪器在没有活着的知觉者的地方能把一些东西记录下来,那些东西如果一个人在那儿是可以知觉到的。一个照相感光板

…… 106

    外在的世界501

    可以把多星的天空任何选出来的一部分制出一个相片来。一个口授留声机可以把近旁的人所说的话记下来。象这样制做机械的记录(这些记录有类乎如果一个人也在那里他所得到的知觉)在学理上是没有限制的。给繁星闪烁的天空照相也许是说明所牵涉到的东西的最好的例子。无论哪个星都可以在任何地方(若是有一个人的眼在那里也看得见那个星)照下相来。因此,在照相板那个地方,有些事情发生,这些事情是和在那里能照下相来的所有那些不同的星有关系。因此在物理空间的一个微小的地域里随时都有无数的事情发生,与一个人在那里所能看见的或一件仪器所能记录的一切事情相应。不但如此,这些事情彼此有空间关系,这些空间关系多多少少正与物理空间中的那些对立的物体相应。在一张星体照相中所出现的那个复杂世界是在拍照的那个地方。

    同样,知觉之心的内容那个复杂世界是在我所在的那个地方。这两种情形不拘哪一个都是从物理学的观点来讲的。照这一个学说来讲,在我看见一颗星的时候,里边牵涉到三个地方:两个在物理空间里,一个在我私人的空间里。有星所处于物理空间中的那个地方;有我所处于物理空间中的那个地方;又有关于这颗星的我的知觉内容所处于我的别的知觉内容中的那个地方。

    在这个学说里有两种方法把事件一束一束地收集起来。

    一方面,你可以把所有那些可以认为是一件“东西”的现象的事件弄成一束。例如,假定这项东西是太阳,首先你就有正在看见太阳的那些人的所有视觉内容。其次你有正在被天文学家拍照下来的所有那些关于太阳的照片。最后,你有所

…… 107

    601第  九  章

    有那些在各处发生的事情,正因为有这些事情,才有在那些地方看见太阳或给太阳照相的可能。这一整束的事件是和物理学的太阳有因果关系的。这些事件以光的速度从物理空间中太阳所在的地方向外进行。

    在它们从太阳向外进行的时候,它们的性质发生变化有两种情形。

    第一可以称之为“正规”

    的情形,这就是大小和强度依反平方律减少。在相当切近的程度上来说,这种变化只是发生在空虚的空间里。但是太阳在有物质的地方所呈现的光景是依物质的性质而有不同的变化。雾就要使太阳显得红,薄的云彩就要使太阳显得暗,完全不透明的物质就要使太阳完全不现任何现象。

    (我说现象的时候,我不只是指人们之所见,也是指没有知觉者的地方与太阳有关的那些所发生的事。)

    如果插进来的那个媒介物包含一只眼睛和一个视神经,则太阳因此所呈的现象就是某人实际上所看见的了。

    某件东西从不同的地方所呈的现象(只要这些现象是“规则的”)如果是属于视觉的,就为透视定律所连结,如果是由别种感觉透露出来的,这些现象也为不是全然不同的定律所连结。

    前面我曾说过,还有另外一个方法把事件集为一些束。

    按照这一个方法,我们不是把一件东西所呈的现象的那些事件集合起来,而是把在一个物理上的处所所呈的现象的所有那些事件都集合起来。在一个物理上的处所的事件其全体我称之为一个“配景”。

    在某一个时间我的知觉内容的总体构成一个“配景”。

    仪器在某一个处所能够记录下来的所有事件之总体也是如此。在我们以前制束的方法中,我们曾有一束是由

…… 108

    外在的世界701

    太阳的许多现象所组成。但是在这第二个方法中,一束只包含太阳的一种现象,那种现象和从那个地方所能知觉到的每个“物”的一种现象相联。在心理学中特别合适的乃是这第二种制束的方法。一个配景,如果碰巧是在一个脑子里,就是由该脑所属的那个人临时所有那些知觉之心的内容所组成。所有这些,从物理学的观点来看,都是在一个地方,但是,在这个配景里有若干空间关系,由于这些空间关系,原来物理学上说是一个地方的,现在却变成一个三度的复合体了。

    不同的人对于一件东西有不同的知觉这个谜,关于一件物理上的物和它在不同的地方所呈的现象二者之间的因果关系这个谜,最后,(也许是最重要的)心与物之间的因果关系这个谜,都被这一个学说一扫而光了。

    这些谜之所以发生,都是由于不能把与某一个知觉的心之内容相连的三个处所加以区分。这三个处所就是(我再说一遍)

    :(1)

    “东西”所在的物理空间中的处所;(2)

    我所在的物理空间中的处所;(3)

返回目录 上一页 下一页 回到顶部 0 1
快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!