友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!
富士康小说网 返回本书目录 加入书签 我的书架 我的书签 TXT全本下载 『收藏到我的浏览器』

电子电路大全(PDF格式)-第48部分

快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部! 如果本书没有阅读完,想下次继续接着阅读,可使用上方 "收藏到我的浏览器" 功能 和 "加入书签" 功能!





方面使情况变遭。如果零点(z )或者极点(p )移向复频面原点,相位裕量会减小。为 

                              1              2 



闭环使用,放大器补偿的目的是移动除了主极点(p1 )之外的所有极点、零点,使他们远 



离复频面的原点(超出单位增益带宽),相频特性类似于图 3。17(b)。  



     由前面分析可知,前馈路径通过补偿电容形成的零点有限制GB的倾向。如果零点不存 



在,可能其他方法也会这样。我们可以通过在补偿电容Cc地前馈通路中插进与Cc串联的调 



零电阻。图 10…11(a)示出了这种技术的应用。  



                                                                                      

          (a)                                      (b)  



                         图 10…11(a)使用调零电阻 R 控制零点  

                                                 z 



                      (b)使用调零电阻的两级运算放大器的小信号模型  



通过图 10…11(b)小信号图得出:  



                 …1 

     p 1                                                      (3…32)  

          g    R R  C 

                  Ι  Π   C 

             m ∏ 



98    


…………………………………………………………Page 547……………………………………………………………

                   …g mΠ CC             …g mΠ 

     p 2         +         +          C                       (3…33)  

           C C      C  CC     C CC          Π 

             Ι   Π     Π         Ι 



             …1 

     p 4                                                   (3…34)  

           CΙRZ 



    和               



                   1 

     z1 =       1                                               (3…35)  

          C  (        ) 

            C           Rz 

                 g mΠ 



                                                                       1 

    容易看出调零电阻是如何控制零点的。为了移动零点,Rz必须等于                                      g mΠ 。我们可 



以移动零点到右半平面到左半平面的极点P 的位置。结果,与输出负载电容有关的极点抵 

                                         2 



消了。为了得到这个结果,必须满足下面条件:  



             Z =P                                                              (3…36)  

                1  2   



             …g mΠ              1 

    使得               =                                                   (3…37)  

               CΠ      C  (   1     ) 

                          C           Rz 

                               g mΠ 

                  CC  +CΠ       1 

    可以   R =(               )(     )                                       (3…38)  

              z 



                     CC       g mΠ 



     由于p2 的被抵消了如图 10…12 所示过。这样电路变的比较稳定了。为了保证p3 和p4 



的值远大于GB。  



                                                                    



                     图 10…12     调零电阻抵消 p 极点示意图  

                                             2 



     由已知得Cc必需满足下式:  



             g mΙ 

       C 》                                                              (3…39)  

         c        C C 

                     Ι  Π 

             g mΠ 



    这样在两级运算放大器电路中用调零电阻可以受到很好的效果。即使有大的负载电 



                                                                                    99  


…………………………………………………………Page 548……………………………………………………………

容,运算放大器仍然可以具有很好的稳定性。  



   通过增加调零电阻可以扩展基本二级CMOS电路的单位增益带宽,而且通过调整密勒电 



容的值还能保证电路有相同的相位裕量,从保征电路的稳定性。根据理论结果可以看出, 

随着R的增大,GB值增大,但是相位裕度会非线性减小,在保证相位裕度大于 60o 的条件下, 



R的变化范围l5%之内。密勒电容Cc增加 5%,GB减小了l5%,相位裕度增加 3。4%。较小 



的相位裕度增量牺牲较大的单位增益带宽,在应用中要根据实际要求寻求一个平衡点。  



10。2 两级电流源负载共源放大器及其补偿  



   电阻负载(或者有源负载)由于其小信号输出电阻较小(电阻负载为其阻值,有源负 



载为 1/gm),使得其频率性能比较好,因此两极点比较靠近零点。为了显著的观察补偿电 



容对极点的分裂效应,参考Gray一书经过推导得出的补偿电容的两极点单零点公式,需要 



满足gm*R》》1 的条件,这样便需加大每级的增益,于是采用电流源负载结构,这样也从另 



一方面提升了增益,便于观察单位增益带宽与次极点之间的互动关系(有源负载两级增益 



积很小,这样单位增益带宽十分接近 3dB带宽,不利于实验)。  



                                                               



               图 10…13  两级电流源负载单管放大电路  



   上图为结构的电流源负载单管放大电路原理图。仿真得到双极点:p0=3。311e7, 



p1=2。100e8,双零点对:1。618e10,Av=56。7dB。可以看到两极点是比较靠近的,而且由于 



该电路增益较大(至少远大于有源负载形式的低于 20dB十倍的增益),可以预期该电路的 



单位增益带宽点落在次极点之外,即相位裕度小于零。  



100    


…………………………………………………………Page 549……………………………………………………………

                                                                    



                图 10…14 两级电流源负载无补偿频率响应图  



   上图即为该两级放大器的频率响应,由于增益较大,单位增益带宽为 2。16GHz,对应 



相位为…189°,即相位裕度为…9°,如果该放大器能够闭环使用(即存在一个假想的负反 



馈输入端——实际无法实现从输出端到输入端的负反馈),可以想象这个闭环系统将会发生 



振荡。  



   前面已经分析,如果单位增益带宽刚好是次极点所在,则相位裕度正好是 45°,系统 



将闭环稳定。因此如果能够将主极点减小(减小开环 3dB带宽),就能够提早增益按 



…20dB/dec下降的开始频率,这样将有可能使单位增益带宽移到次极点之内,从而满足相位 



裕度要求。另外,如果能将次极点增大,则也可能使次极点频率将单位增益带宽包含进去, 



同样也能满足相位裕度的要求。相位补偿技术通常是在两个高阻结点之间或者某个高阻结 



点与地之间加上一个电容,通过调节这个电容的值,就可以改变极点的位置。(为什么是高 



阻结点?因为根据τ =2πRC ,只有高阻值才能产生较低频的极点,低阻结点产生的极点 

值较高,通常将被忽略。)  



    图 18 为加入补偿电容值之后的两级放大器,依次增大补偿电容的取值,分析运放极零 



点情况,可以得到以下数据:  



表 10…4 补偿电容与极零点关系  



补偿电容值         主极点 p0       次极点 p1        零点 z0        零点 z1  



1p            2。067e5      1。215e9       1。512e8      1。618e10  



2p            1。037e5      1。233e9       7。596e7      1。618e10  



                                                                101  


…………………………………………………………Page 550……………………………………………………………

3p               6。921e4           1。239e9          5。072e7           1。618e10  



10p               2。080e4          1。248e9          1。525e7           1。618e10  



20p              1。040e4           1。250e9          7。628e6           1。618e10  



                                                                                       



                     图 10…15  两级电流源负载单管放大电路及级间补偿电容  



    根据Gray一书给出的存在补偿电容情况下的极零点的公式,当补偿电容C很大(远大 



于寄生电容),并且gmR1》》1,gmR2》》1(即每级增益远大于 1)的情况下,有: 



            1                     g m C 

p 0 ≈           ,p 1 =                      (gm均为第二级放大管的跨导,R1、R2 

        g R R  C           C  C  +C(C   +C  ) 

         m  1 2              2 1       1    2 



为各级输出电阻)。增大C,则p0 反比例减小,p1 增大,这也就是补偿电容能够使两极点产 



                                                                         g m 

生分裂的原理。但由p1 公式可得,当C很大(远大于C1 和C2)时,p 1                              →           ,也就 

                                                                      C  +C 

                                                                        1    2 



是说,次极点随补偿电容的增大将逐渐趋近一个上限定值。从表 4 中我们可以清楚地看到 



这一趋势,即主极点p0 随Cc成反比例减小,次极点p1 稍有增加,当Cc很大时,近似等于定 



                                                     g m 

值 1。25e9。在此过程中,第二级零点z0 仍按公式 z 0                   =      随Cc呈反比例变化。  

                                                    C 

                                                      dg 



    可以检验当Cc为 3p时各极零点的估计值。其中gm2=959。039u,gds1=28。106u, 



gds2=28。0841u,gds1m=8。64561u,gds2m=8。65395u。从而可以估算p0=7。473e4。而C1 = Cgd1m  



+ Cjd1m + Cgs2m + Cjd1 = 2。352f + 7。67f + 23。3224f + 40。2883f = 73。6327f,C2= Cgd2m  



102    


…………………………………………………………Page 551……………………………………………………………

+ Cjd2m + Cjd2 = 2。354f + 7。671f + 40。283f = 50。308f。从而可以估算p1=1。232e9(按 



极限公式估算)或 1。220e9(按标准公式估算)。而第二级零点仍为z0=gm/Cc=5。092e7。可 



见估算精度尚可。  



    从上面有关补偿电容同极零点的互动可以看到,补偿电容从原理上可以使两极点分 



裂,但是在增大补偿电容的过程中(前提是补偿电容远大于寄生电容——一般的补偿情况 



都是这样),其主要的效应是压低了主极点,而对于次极点,除了是否存在补偿电容(即加 



入补偿电容之前次极点为 2。100e8,加入补偿电容之后为 1。23e9 左右的值)能够明显影响 



其位置外,补偿电容值的变化对其影响不大。即一旦加入了补偿电容,则主要需要考察的 



指标为 3dB带宽。  



    另外注意到Gray一书推导中假设Cc很大——这一假设仅是指补偿电容应该远大于寄 



生电容值。我们可以在输出级加上一个负载电容,其值为典型的 2p,则未加补偿电容时, 



仿真得到p0=2。75e6,p1=7。12e7。加入补偿电容之后,有下表:  



表 10…5 补偿电容与极零点关系 II(负载电容 2p)  



补偿电容值         主极点 p0        次极点 p1         零点 z0         零点 z1  



1p            1。935e5        7。667e7      1。512e8        1。618e10  



2p            1。003e5       7。688e7       7。596e7        1。618e10  



3p            6。7664e4      7。695e7       5。072e7        1。618e10  



10p           2。066e4        7。706e7      1。525e7        1。618e10  



20p           1。037e4       7。708e7       7。628e6        1。618e10  



    可以看到分裂效果并没有明显的降低,明显的区别仅在于,此次由于输出级存在一个 



显著的负载电容,因此是否存在补偿电容对次极点的影响并不大(相比较无负载电容的情 



                              g m 

况来说)。另外我们可以根据p 1         →        预期,负载电容越大(同补偿电容相比),补 

                            C +C 

                             1   2 



                                                           g m 

偿电容对次极点的移动作用越不明显,甚至可能会出现反向趋近于 p 1                      →        的现象 

                                                         C  +C 

                                                          1   2 



 (即使次极点减小,关于这一现象,可以将负载电容设为 10p来观察)。总之,补偿电容应 



该同负载电容为一个相近的值,最好是比负载电容大——这样又将带来摆率等一系列问题, 



需要综合考虑。  



    下图是补偿电容为 3p,无负载电容时,放大器的频率响应图:  



                                                                   103  


…………………………………………………………Page 552……………………………………………………………

                                                                          



                  图 10…16 补偿电容对相位裕度的改善(补偿电容 3p)  



    由仿真得到的结果可以看到,影响放大器频率性能的三个点——主极点(6。92e4)、 



次极点(1。24e9)、主零点(5。07e7)之间都充分分离(大于 10 倍频程以上),因此在频率响 



应波特图上可以看到一条很标准的频率曲线,三点对应相位分别对应 45°、135°、225° 



左右。单位增益带宽为 130MHz,对应相位为 165°,即相位裕度为 15°。可以看到,由于 



主要压低了 3dB带宽频率,使得单位增益带宽已经移到了次极点之内。如果是一个标准的 



双极点系统,这个带宽对应的相位裕度应该大于 45°,但是现在实际上仍未达到要求。从 



图中可以明显看到,是主极点和次极点之间存在的零点影响了相位裕度。由零点公式 



     g m 

z 0 =  ,由于MOS器件的跨导一般不大,使得这个零点无法达到高频段(在双极型器件 

     C 

      c 



中不存在这个问题),因此将会影响频率响应。由于零点对频率的影响为 20dB/dec,因此 



将使得单位增益带宽变大,延缓下降,从而相位裕度降低。下面将要讨论的消零电阻的引 



入即是为了解决这一问题。即通过消去次极点之内的零点,使放大器呈现一个两极点系统 



的响应(在感兴趣频段内),从而达到稳定性的要求。  



                                             g m 

    另外对于两零点情况可以做一些思考。由公式z 0                =    可以看到,由于第二级栅漏之 

                                             C 

                                              dg 



间可能会接上一个较大的密勒电容来实现相位补偿,这使得第二级零点可能发生改变,且 



由z0 公式可以看到,z0 只能变小。但是由于第一级绝对不会接上一个栅漏电容——这无异 



于自降带宽,因此这种由共源放大器为基本结构的放大电路有一个固有最大零点,这个零 



104    


…………………………………………………………Page 553……………………………………………………………

点只由输入管栅漏交叠电容和该管跨导决定。由于mos管输入级跨导一般也仅为 1m~10m量 



级(mos管本身跨导无法与双极器件相比,且输入级跨导如果设计得比这个数值更大,则可 



能引发功耗、失调、寄生电容等一系列问题,因此CMOS运放并不是仅靠一味提升输入管跨 



导来提升增益的),对于Cdg,由于输入管跨导大时管尺寸一般较大,因此寄生电容一般也 



大。对z0 做一个最大化的估计,估计Cdg为 100fF量级(实际输入跨导 10m量级时,Cdg可 



能大约 1pF量级;跨导 1m量级时,Cdg大约几十fF量级,由于gm和Cdg为比例关系,作为最 



大化估计,取 10m跨导时的Cdg为 100fF),这样z0 约为 1。6e10 Hz。由于正零点将会严重影 



响放大器的闭环稳定性,降低相位裕度,因此一般应将单位增益带宽取在该正零点之内且 



至少远离十倍频程(注意到下面将讨论的补偿技术中的调零电阻可以抵消第二级零点,但 



是对于这个固有极点是无能为力的)。这样作为CMOS运算放大器的最大单位增益带宽(稳定 



工作时),合理值最多为 1GHz以下,因此一般来说单位增益带宽为几百MHz为其带宽上限。 



如果欲设计GHz带宽以上量级的运放(如射频用途),可以看到只有采用寄生特性更好的工 



艺,或者速度特性更好的工艺(能实现跨导更大)如砷化镓工艺,或者使用带宽性能更好 



的双极型器件。(对于JFET输入级还未知其寄生电容特性,可能可以稍稍改善频率性能,但 



更高速的放大器更适合采用双极型器件来实现)  



   以上推论有几个问题。  



   第一,如本文开头所提到的极零点对产生的极零相消效应有利于提高放大器的带宽, 



因此可否采用极零相消技术将次极点移动到同零点相近的位置,从而同时消去这个极点和 



零点,形成一个较理想的单极点放大器?我以为答案是否定的。原因在于决定这个次极点 



的因素在于第一级负载电阻R和第二级输入电容C。如果不采用补偿技术(补偿技术将会等 



效增大第二级输入电容),第二级输入电容近似为Cgs,约几十fF量级,即使负载电阻为有 



源负载(频率特性最好),此电阻量级约为几k量级,则估算此极点为(2π*1k * 20f  )…1 , 



约为 7。96e9 Hz,难以达到 1。6e10 Hz的量级,而且牺牲了增益性能。  



   第二,众所周知,采用共栅形式的放大器能够得到极好的带宽性能,而且能够消除密 



勒效应的影响。采用这种方式无疑能比上述放大器得到更好的频率性能。但是,共栅形式 



的放大器由于输入阻抗小,一般不作为运放第一级,除非采用共源共栅输入级——这在低 



电源电压的情况下设计困难。  



   总而言之,上面关于零点的推论只是给出了一个CMOS运放(也许特指Chartered工艺) 



设计的一个带宽上限,最标准的对带宽上限的估计还是应该采用类似双极型器件固有上限 



截止频率 f T 的方法(注意到类似的
返回目录 上一页 下一页 回到顶部 9 9
快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!