友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!
冰人幽灵-第82部分
快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部! 如果本书没有阅读完,想下次继续接着阅读,可使用上方 "收藏到我的浏览器" 功能 和 "加入书签" 功能!
接着拉姆赛也走上了讲台,把他们用不同方法制成的氮气,当众做了各种表演实验。
在事实面前,大会的参加者公认了他们的新发现。
氩气的发现是从1。2508和1。2572之间的差数开始的。小数点后边第三位数字的差别引出了氩气。
人们不禁想起100多年前的卡文迪许,他实际上已经捉住了氩气——一个小气泡,并且指出这个小气泡不跟氧气化合。但是他那时候还没有称量千分之几克的精密天平,也没有光谱分析法,他只好把这个小气泡放走了,没有能够真正的发现氩气。
19世纪末氩气的发现是精密度的胜利,是天平的胜利,是小数点后边第三位数字的胜利。
从天上来到人间
氩气的存在得到了公认。但是这仅仅是开始,拉姆赛还在继续研究氩气的各种性质。
1895年2月1日早晨,他接到伦敦化学教授亨利&;#183;梅尔斯的一封来信。信中说:“不知道您是否试验过氩气跟金属铀的反应?如果没有的话,我认为您应该试一试。1888…1890年间,美国地质学家希莱布兰德曾经把钇铀矿放在硫酸中加热,结果冒出来许多气泡。这种气体既不能自燃,又不能助燃。希莱布兰德当时认为这是氮气。不过也可能是氩气。我认为应该检查一下,说不定钇铀矿中含有铀和的氩的化合物!”
拉姆赛把手头的实验告了一个段落以后,立刻根据亨利&;#183;梅尔斯的提示进行研究。他派人找遍了伦敦的化学药品商店,才买到了1克钇铀矿。
一个新的实验开始了。拉姆赛的助手特莱凡斯把钇铀矿放在硫酸中加热,气泡冒出来了,收集到了几立方厘米的气体。
拉姆赛和特莱凡斯又用了整整4天的工夫,把气体中能跟其他物质化合的杂质除掉。实际上杂质很少,大部分是跟任何物质都不起反应的气体。
气体装进前面讲过的那种放电管中。通上高压电,气体放出光来。
拉姆赛用分光镜作检查的时候,本来以为会看到氩的谱线,但是出乎意料之外,他看到的是一条黄线和几条微弱的其他颜色的亮线。
拉姆赛想,可能是白金电极上沾了点钠盐,或是分光镜出了毛病。他仔细作了检查,并没有这一类问题。
那么就应该检查一下,这条黄线是不是与销的谱线重合了。拉姆赛于是故意在放电管内放进去一点钠,重新封好再观察它的光谱。
结果光谱中出现了钠的谱线,但是以前看到的黄线还在老位置上,在钠的谱线旁边。毫无疑问,这条黄线不是钠的,而是属于某一种别的物质的。这是一种什么物质呢?
拉姆赛把他所知道的各种物质的光谱都重新回忆了一遍,没有一种跟它相似。经过长久的思索,他记起了詹森和罗克耶在27年前发现的太阳上的氦。氦的光谱不就是黄线吗!如果这条黄线跟那条黄线重合的话,那么钇铀矿中放出来的气体就既不是氮,也不是氩,而是太阳元素——氦了。
太阳元素就这样容易地找到了?这个结论是不是太大胆了?拉姆赛是十分严谨的科学家,他决定请他的朋友,当时英国最好的光谱学专家克鲁克斯(他曾经用光谱法发现了元素铊)帮忙。他派人把放电管送到克鲁克斯那里,并且附了一封信。他没有肯定说这是氦,而是说他找到一种新气体,建议叫做krypton(希腊文“隐藏”的意思)——我国译作“氪”,请克鲁克斯仔细确定一下新气体的谱线的位置。
1895年3月23日早晨,拉姆赛正在自己实验室中研究这新气体的光谱,邮递员送来了一份电报,里面写着:
“氢——这是氦,请过来看。克鲁克斯。”
太阳元素真的由天上来到人间了!
拉姆赛立刻来到克鲁克斯那里,用克鲁克斯的精密的光谱仪仔细观察。的确,这气体正是氦。
当天,拉姆赛给法国科学院院长贝特罗拍了个电报,通知他说:氦在地球上发现了。
真是无巧不成书,就像詹森和罗克耶几乎同时发现太阳上的氦一样。在拉姆赛发现氦的两个星期以后,瑞典青年化学家兰格列也在党铀矿中找到了氦。他的老师克利夫把他的发现也报告给同一个贝特罗院长,发信的日期是1895年4月8日。
(二)
新任务和新问题
拉姆赛是世界上第一个拿到了太阳元素的化学家。当然,他立刻开始研究氦的性质,用氦作了各种各样的实验。
太阳上的氦是没法拿来称的,天文学家们猜想,氦是一种很轻的气体。拉姆赛第一个称出了氦的密度,证明天文学家的预测是对的。氦果然是很轻的气体,空气比它几乎重6。5倍。只有氢比氦还轻,其他气体都比氦重。
拉姆赛试验了许多物质,看看它们会不会跟氦发生反应。结果证明,氦和氩一样,不跟任何物质化合。它们都是“惰性气体”。
能不能在空气中找到氦呢?氦既然是不跟任何物质化合的气体,它必然会跑到空气中去。
拉姆赛开始了新的搜索——在空气中寻找氦。
如果空气中真有氦的话,只要把空气中的其他气体都去掉,把氧气去掉,把氮气去掉,把新发现的氩气也去掉,剩下的就是氦气了。
这工作的头两步——除去氧气和氮气,拉姆赛在寻找氩气的时候已经作过了。只要把空气通过装有赤热铜屑的磁管,空气中的氧气就会跟铜反应,生成氧化铜而被除掉,剩下的就是氮气和氩气的混合气,里面可能有氦气。
空气中的氮气通过装有赤热镁屑的磁管,氮气就会跟镁反应,生成氨化镁而被除掉,剩下的就是拉姆赛和瑞利共同找到的氩气了。他们找到的氩气中会不会就有氦气呢?氦气跟赤热的铜和镁也不起反应的,空气中如果有氦气的话,它必然会混在氩气中。
怎样把氦气和氩气分开呢?要是能找到一种只跟氩气化合而不与氦气化合的物质,问题就解决了。可惜就是找不到那样一种物质。因为两者都不跟任何物质化合。这就是说,分离氧气和氮气的那种方法,不能用来分离氩气和氦气。
看来问题是难以解决了。
需要把空气变成液体
拉姆赛并没有灰心,他想到了化学家分离酒精和水的方法。
酒精的沸点是78摄氏度,比水的沸点低,所以蒸发得比水快。化学家利用了这一点,把混有水的酒精放在蒸馏瓶里加热:一开始出来的一批蒸气是纯酒精的蒸气,后来的一批蒸气是酒精和水的混合蒸气,最后一批蒸气就是纯粹的水蒸气了。只要把头一批蒸气冷却,就可以得到纯粹的酒精。这个方法叫做分馏法。
拉姆赛决定用分馏法把空气中的氩气和氦气分开。但是酒精和水是液体,而氦气和氩气是气体。要用分馏法使它们分离,首先就要把它们变成液体,或者说,首先要把空气变成液体。
拉姆赛想,把空气变成液体,再让它慢慢蒸发,那么组成空气的各种气体——氮气、氧气、氩气、氦气(如果有的话),在蒸发的时候就会有先有后,先是最容易蒸发的,然后是比较难蒸发的。
要使空气变成液体可不是容易的事,必须冷到零下192摄氏度。在地球上,连北极也没有这样冷,必须有一台制造寒冷的机器——制冷机。
在今天,使空气变成液体是一件很平常的事。但是在当时,全世界只有几个实验室能制造液态空气。
当时在英国,研究这方面问题的专家就是那位向瑞利建议查卡文迪许实验资料的物理学家——杜瓦。杜瓦还发明了保存液态空气的容器——杜瓦瓶。这是一个夹层的玻璃瓶,内壁镀银,夹层抽成了真空。真空不能传热,外面的热传不到瓶内去,因而瓶内的液态空气可以保存比较长的时间。后来人们想,瓶外的热既然不能传进去,瓶内的热当然也不能传出来,于是把杜瓦瓶改造成保存开水的热水瓶。我们常用的热水瓶和保存液态空气的杜瓦瓶,实际上是同一种容器。
杜瓦有个缺点,思想非常保守。他的实验室里有把空气变成液体的机器,虽然方法既复杂又困难,他还是把他的发明保密。不仅如此,连制成的液态空气,他也不肯轻易给人。
可是拉姆赛的工作需要很多的液态空气,这怎么办呢?
制造冷
说来也巧,正当拉姆赛急需液态空气而又得不到的时候,一种既简单又方便的制冷机发明了。
这种制冷机是两个人各自在自己的国家里发明的,但是运用的原理恰好一样。他们是德国的林德和英国的汉普松。
制冷机的原理是这样的:
空气受到强烈的压缩,就会发热。让发热的压缩空气冷却下来,再突然让它膨胀,它就要吸收很多的热,而迅速变冷。
林德和汉普松都利用了这个物理原理,制成了制冷机。
他们把空气送进机器,强力的泵把空气压缩在细管子里,然后让压缩的空气通过一个小孔,喷进细管子外面的空室,让它迅速膨胀变冷。用这变冷了的空气来冷却细管子里后进来的压缩空气。这部分冷却过的压缩空气,膨胀后就变得更冷。这样第二批冷却第三批,第三批冷却第四批,越来越冷,最后温度下降到零下192摄氏度。这时候,空气就变成液体了。液态空气积存在空室里,只要打开龙头,就像自来水一样放出来了。
英国的发明家汉普松和拉姆赛都住在伦敦。他知道拉姆赛需要用液态空气进行重要的研究,就把他的新机器制得的第一批液态空气750立方厘米,装在杜瓦瓶中送给了拉姆赛。
意外的收获
“液态空气来了!”
“液态空气来了!”
在拉姆赛实验室中工作的年轻人奔走相告。他们放下手头的工作,都来看这从来没见过的东西——液态空气,更想看看拉姆赛怎样从液态空气中提取氦。
杜瓦瓶中的液态空气像清水一样,慢慢地冒着小气泡。瓶子一摇动,气泡就增多,发出咝咝的声音。
在找氦之前,拉姆赛用液态空气,向他的学生们做了好几个奇妙的实验。
一个小橡皮球放进液态空气里,再拿出来扔在地上。橡皮球没有跳起来,而是摔碎了!原来橡皮在液态空气的温度下失去了弹性,变得像玻璃一样脆了。
拉姆赛在试管里装了小半管水银,中间插一根铁棍,把试管放在液态空气中。水银冻成了固体,拿着铁棍一拔,就连水银一起拔了出来。拉姆赛用这把水银锤子在墙上钉了一个钉子,原来水银冻得比铁还硬。
拉姆赛又把一块面包放进液态空气里。他让大家把窗帘都放下来。拿出面包来一看,这块冻硬的面包在漆黑的房间里发出天蓝色的光辉。
拉姆赛一个又一个地做着实验,各种常见的东西放进了液态空气,都希奇古怪的变了样。年轻人不时发出惊叹声。但是他们也越来越着急了:宝贵的液态空气越来越少了,还找不找氦呢?
拉姆赛停止了实验,让大家都去吃午饭。他自己也离开了实验室,让杜瓦瓶里的液态空气继续蒸发。
大约过了一个半钟头,拉姆赛才回到实验室。杜瓦瓶里的液态空气剩下不多了,但是他一点也不可惜。他认为:氦气比氧气和氮气蒸发得慢,多耽搁一些时间,可以让氧气和氮气先跑掉,氦气就会剩在杜瓦瓶里。
等到液态空气只剩下大约10立方厘米的时候,拉姆赛不让它们白白地跑掉了。他把最后这一点液态空气蒸发成的气体仔细收集起来。他认为,最后的这部分气体中,一定会有氦气。
为了把这部分气体中的剩余的氧气和氮气除掉,拉姆赛让气体通过装有赤热铜屑和赤热镁屑的瓷管,最后得到几个大气泡。
气泡被封在放电管中,通上高压电,发光了。拉姆赛开始研究它的光谱。
他看到了橙色和绿色的谱线,这是氩的谱线,没有错。但是令人失望的是,预料的那条黄色的氦的话线没有出现。
没有氦!
看来拉姆赛估计错了。一个可能是空气中根本就没有氦气;另一个可能是氦气蒸发得很快,甚至比氧气和氮气蒸发得还快,它早就逃走了。
但是拉姆赛并不懊悔,他仔细观察光谱,发现了两条明亮的新谱线,一条是黄的,一条是绿的。这两条谱线跟已知物质的谱线都不重合。显然,放电管中除了氩气以外,还有一种新的气体。
拉姆赛在研究亿铀矿中的气体的时候,曾经把氦叫做氪。这一回,他把找氦的时候发现的新气体元素,叫做了“氪”。
就这样,拉姆赛想在空气中找氦,氦没有找着,却发现了氪。这真是意外的发现。
这是1898年5月24日的事。
在空气中找到了氦
这一回没有找到氦,拉姆赛并没有失去信心。他已经储存了15升由空气中提取的氨气,他相信氦气就混在这些氩气中。由上面实验的结果可以预料,氦是非常容易蒸发的。他和他的年轻助手特莱凡斯设计了新的实验方案。
过了几天,在6月初,汉普松又送来了液态空气,这一回有好几升。新的实验开始了,他们把一端是球形的玻璃管浸在装有液态空气的杜瓦瓶里,然后把那15升由空气中提取的氩气,慢慢送到玻璃管里。在液态空气的温度下,氩气凝成了液体,积在球中大约有13~14立方厘米。
最后,他们关闭了玻璃管上的活塞。这时候,玻璃管仍旧浸在液态空气里。过了几分钟,他们把玻璃管中的未液化的气体抽了出来,装进了放电管。
通电以后,这气体在放电管中发出美丽的红光。
用光谱仪检查,拉姆赛和特莱凡斯发现了几条明亮的橙红色的谱线。查对一下,这又是一种新的气体。
他们给这新气体元素起名字叫做neon(希腊文“新”的意思)——我国译作“氖”。
再仔细检查一下,他们在光谱中找到了那条黄线——氦的谱线,位置一点也不差。但是这条黄线很暗淡,说明氦气很少。
氦又被找到了。这个曾经是很神秘的太阳元素,原来在我们周围的空气中就有。
几年以后,拉姆赛在一次公开讲演中谈到氦的发现经过,他说:“寻找氦,使我想到了老教授找眼镜的笑话。他拼命的在地下找,桌子上找,报纸底下找,找来找去,原来眼镜就搁在自己的额角上。氦也被找了很久,而它却就在空气里。”
空气里的新家族
在上面的实验里,15升由空气中提取的氩气被液态空气冻成了液体。拉姆赛和特莱凡斯首先抽出了液体上面没有液化的气体,发现了氖,还有氦。接着,他们让液体不断蒸发,并且一份一份地抽出蒸发的气体,检查它们的光谱。
开头,收集的气体大部分是氩,随后,就是不久前发现的氪。而把最后一点点气体装进放电管,通上电却发出了美丽的蓝光,又一种新的气体元素被发现了。这是1898年7月12日的事。
这种发蓝光的新的气体元素起名叫做xenon(希腊文“陌生”的意思)——我国译作“氙”。
就这样,拉姆赛在得到液态空气以后,不到一个半月,就在空气中又发现了三种新的气体元素——氟、氖和氙。
现在让我们来回顾一下这段历史:在瑞利和拉姆赛在空气中发现氩之前,科学家都认为空气是由氧和氮组成的。接着,拉姆赛和特莱凡斯又证明了先前发现的氩也不是纯的气体,它里面还混杂着氦、氖、所氪和氙。
为了研究这些气体的性质,拉姆赛和特莱凡斯蒸馏了大量的液态空气,他们得到了纯粹的氩气,纯粹的氪气和纯粹的氙气。但是氖气和氦气总是在一起,没法把它们分开,因为在液态空气的温度下,它们都不会变成液体。
需要比液态空气更低的温度,才有可能使氖气和氦气变成液体。这就需要用液态的氢。液态空气的沸点是零下192摄氏度,而液态氢气的沸点是零下253摄氏度。
可是哪里有液态的氢呢?前面提到的那位杜瓦,在1898年第一回制得了液态氢。可是他连液态空气都不肯给别人,更不用说液态氢了。怎么办呢?
特莱凡斯决心自己装一台机器制造液态氢。经过一番努力,液态氢真的得到了!头一批产品——100立方厘米的液态氢,立刻用来分离氖气和氦气。
氦气和氖气的混合气体送进了浸在液态氢中的玻璃小球,氖气不仅变成液体,而且立刻凝结成了固体,氦气却仍然是气体。于是,最难分离的氦气和氖气也分开了。
拉姆赛和特莱凡斯证明:在1升空气中大约有10立方厘米的氩气,18立方毫米的氖气,5立方毫米的氦气,1立方毫米的氪气,氙气最少,只有0。1立方毫米。
为了详细地研究这些气体的性质,他们先后用了3年时间。
他们测定了每种气体的密度,结果是按着氦、氖、氩、氪、氙的次序,一个比一个大。
他们做了许多化学实验,结果证明,这一群气体,不仅氩气和氦气,就是后发现的氖气、氢气和氙气,也不肯跟任何物质发生化学反应。它们极不活泼,所以人们把它们叫做“惰性气体”。在门捷列夫周期表上,氦、氖、氩、氪和氙形成单独的一族——零族元素。
在拉姆赛的时代,从空气中取得一点点纯粹的惰性气体,要花很大气力。所以人们也把它们叫做“贵气体”,或者“稀有气体”。
现在就不同了,世界各国都建立了大的气体工厂,这些工厂的原料就是空气。空气在工厂中先变成液体,再用分馏法来分离,制成纯粹的氮气、氧气和氩气,它们都装在钢瓶里出售。氦气、氖气、氪气和氙气也提纯了,装在特制的容器里,供给生产技术部门和科学研究单位使用。
这些“稀有气体”,现在都不是很难得到的东西,价钱也大大降低了,“贵气体”这个名字,现在不大有人用了。1962年,人工合成了氙跟铂、氟的化合物,以后又陆续合成了不少红的化合物和氙的化合物,如氟化氪、氯化氙、氧化氙等等。“惰性气体”这个名字,看来也不大正确了,但是由于习惯,现在仍然使用。
到处找氦
在历史上,氦被人们发现三次了:第一次在太阳上,第二次在钇铀矿里,第三次在空气里。这引起了当时科学家们的莫大兴趣。
既然空气里能找到氦,水里会不会有呢?既然在钇铀矿里有氦,别的矿物和岩石中会不会有呢?于是大家纷纷去找氦,当然同时也去找其他惰性气体。
化学家们检查了雨水、河水、海水、井水和各种矿泉水。他们发现水中也溶解有氦气和其他惰性气体,不过含量比空气中还少。只有矿泉水是例外,某些矿泉水中溶解有相当多的氦气。德国物理学家基索姆在一处山泉水中,拉姆赛在一处矿泉水中,瑞利在一个疗养院的地下水中,都发现了较多的氦气。
还有一些人在动植物体中去找氦,结果没有找到。有人还从各种鱼类的鱼鳔中取出气体来研究,发现鱼鳔中的气体与空气没什么两样。
在矿物和岩石中找氦的成绩比较大。其中含氦气最多的是锡兰岛出产的方钍矿,1千克方钍矿加热后,能放出10升氦气。
在研究了很多种矿石之后,拉姆赛有一个发现,那就是,含有铀和钍的矿石中总是有氦气,而不含铀和钍的矿石中就没有氦气。
真是怪事!氦是惰性气体,它不会跟铀和钍化合,这一点拉姆赛早已试验过了。但是在矿物中,氦为什么总是跟铀和钍一起出现呢?氦跟铀和钍有什么关系呢?
看不见的射线
正当拉姆赛在英国热心地寻找空气中的新气体的时候,法国的科学家们也作出了惊人的新发现。
在拉姆赛由钇铀矿中发现氦的第二年,1896年3月,法国巴黎的物理学家贝克勒尔也研究了铀的各种化合物和铀的矿石,但是他找到的不是氦,而是发现铀在不停地发出看不见的射线,也就是说,铀有放射性。
铀是1789年德国化学家克拉普罗斯发现的金属元素,它的外表像银,化学性质像钨。将近100年来,人们都认为铀和其他金属一样,是一种普通的元素。贝克勒尔的实验告诉我们:铀和一般元素不一样,它发出的看不见的射线,可以隔着黑纸使照相底片感光。这可是
快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!